10/15/2014 R390\_PSMOD

## 12BW4 Rectifier Tubes in the Collins R-390/390A

by Dexter Francis, N0YLJ 920 Little Valley Road Salt Lake City, Utah 84103 cwest@ xmission.com (801) 363-8823

When I finally added a Motorola R-390 to my collection (S.N. 960) I found that the power supply needed a full rebuild. Rather than stay with the increasingly rare and costly 26Z5Ws, I decided to try to find a less expensive and more common full wave rectifier tube. A pair of nine pin miniatures, with 12 or 13 volt filaments in series, with similar base connections to the 26Z5W, would be perfect. The 1964 RCA Tube Data book (RC-23) indicated that the 12BW4 was a good candidate, having a similar base diagram and a 25% higher peak plate current capacity. The only big "hitches" were the differences in the base connection diagrams; The 12BW4's cathode connection is on pin 9, the 26Z5's cathodes are on pins 3 & 8. The 12BW4's plates are on pins 1 & 6. If not for the 26Z5's filament center-tap, you could just connect pin 1 to pins 6 and 7, pin 3 to pins 8 and 9 and rewire the filament supply to provide 12 volts.

## **26Z5W Characteristics**

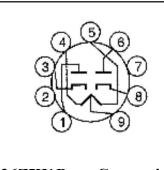
(From GE "Essential Characteristics")

Base: 9BS

Envelope Height: 1 15/16"

Filament: 26.5 V @ 200 ma.

(Total 400 ma. load on supply.)


Voltage Drop: 22 Volts at 100 ma.

Max DC current: 50 ma. (per plate)

PIV: 1250 Volts.

Max Peak Current: 300 ma.(per plate)

RMS supply voltage: 325 (per plate)



26Z5W Base Connections

Note that a 26Z5 (9BS) has two separate cathodes with a pin for each (3&8) while the 12BW4 (9DJ) has one cathode connection (pin 9). The R-390 did not take advantage of the center-tapped filament (pin 9) on the 26Z5W by connecting it to the center-tap of the 25.2 volt filament winding of the power supply. (Pin 9)

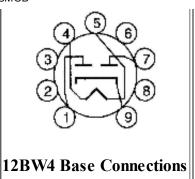
## 12BW4 Characteristics

(From RCA Data book RC-27)

10/15/2014 R390 PSMOD

Base: 9DJ

Envelope Height: 2 3/8"


Filament: 12.6 V @ 450 ma.

(Estimated from 6BW4 specs as the data book shows 6.3 V @900 ma.!!!)

Max DC current per plate: 62.5 ma.

PIV: 1275 Volts.

Peak Current: 350 ma. (per plate)



The 26Z5W had an internal resistance of 220 ohms at 100 ma. ( $22V = 0.100 \text{ A} \times 220 \text{ ohms}$ ). The 12BW4 has a total impedance of 82 ohms per plate or 41 ohms for two plates in parallel, so it appears the voltage drop across the 12BW4's should be lower than the 26Z5W's.

## **Details**

Since my R-390's power supply was completely carbonized, I decided to disconnect all the wires to the sockets clean it all up and start fresh. The R-390 power supply can be removed from the chassis, so the changes are fairly easy to do.

Move the wires on both sockets from pin 6 to pin 7 and pin 8 to pin 9. Add a jumper from pin 1 to pin 7. Move the filament circuit feed wire from pin 4 on one socket to pin 5 of the other socket, and break the connection from pin 5 to pin 5 between the sockets. (This will put the filaments in series.)

George Rancourt tells me he has also done this mod on one of his R-390A's and that it worked very well. The measured plate voltages are right on spec @ 240 Volts.

After nearly 50 years of modifications and "improvements" to the R-390 it was gratifying to find a "new" one that increases the reliability of the power supply, reduces stress on the tubes, and is fairly easy to do. Using less expensive tubes than the 26Z5W was a welcome bonus.